analysis indicated that the Fe^{2+} ions have a higher concentration at the $M(1)$ site than at $M(2)$, and that the Na^{+}site is approximately half-vacant, giving the chemical formula $\mathrm{Na}_{0.56} \mathrm{Fe}_{0.28}^{\mathrm{II}} \mathrm{Ti}_{1.72}^{1 \mathrm{~V}} \mathrm{O}_{4}$. Though some of the Fe^{2+} ions might be oxidized to Fe^{3+}, the amount should not be large, since the final difference Fourier maps are quite flat around the Na^{+}and ($\mathrm{Ti}^{4+}, \mathrm{Fe}^{2+}$) sites.

The (Ti, Fe) O_{6} octahedra share edges, constructing double chains parallel to [010]. The chains are further joined laterally with each other by sharing corners of the octahedra to form a three-dimensional framework with ditrigonal tunnels running parallel to [010]. The $M(1)-\mathrm{O}$ distances range from 1.98 to $2.01 \AA$ (mean $2.00 \AA$), while the $M(2)-\mathrm{O}$ distances are in the range from 1.95 to $2.04 \AA$ (mean $1.98 \AA$). These values are in agreement with the (Ti, Fe)-O distances found in $\mathrm{Na}_{0.90} \mathrm{Fe}_{0.90} \mathrm{Ti}_{1 \cdot 10} \mathrm{O}_{4}$ (Mumme \& Reid, 1968) and freudenbergite (Ishiguro, Tanaka, Marumo, Ismail, Hirano \& Somiya, 1978). In fact, the ionic radii given by Shannon \& Prewitt (1969) suggest that the (Ti, Fe)- O distance in the present crystal should be longer than those in the above two crystals by only 0.005 and $0.013 \AA$ respectively. It is notable that the Fe^{2+} ion with a larger ionic radius than Ti^{4+} is more concentrated at the $M(1)$ site which has a slightly larger octahedral environment than $M(2)$.

The $\mathrm{Na}-\mathrm{O}$ distances range from 2.39 to $2.63 \AA$ (mean $2.48 \AA$). Since the Na^{+}ions lie in the wide tunnel spaces and approximately one half of their sites are
vacant, this compound is expected to show ionic conduction by Na^{+}ions in the [010] direction.

The authors are grateful to Professor Y. Iitaka for his permission to use an automated diffractometer in his laboratory at the University of Tokyo. Computations were carried out on HITAC 8700 and M-180 computers at the Computer Centre, Tokyo Institute of Technology.

References

Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 73-74. Birmingham: K ynoch Press.
Ishiguro, T., Tanaka, K., Marumo, F., Ismail, M. G. M. U., Hirano, S. \& Sōmiya, S. (1978). Acta Cryst. B34, 255-256.
Li, C., Reid, A. F. \& Saunders, S. (1971). J. Solid State Chem. 3, 614-620.
Mumme, W. G. \& Reid, A. F. (1968). Acta Cryst. B24, 625-631.
Reid, A. F., Perkins, H. K. \& Sienko, M. J. (1968). Inorg. Chem. 7, 119-126.
Reid, A. F. \& Sienko, M. J. (1967). Inorg. Chem. 6, 321324.

Reid, A. F., Wadsley, A. D. \& Sienko, M. J. (1968). Inorg. Chem. 7, 112-118.
Shannon, R. D. \& Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.
Tokonami, M. (1965). Acta Cryst. 19, 486.

Lead Zirconium Sulphide

By R. Lelieveld and D. J. W. IJdo
Gorlaeus Laboratoria, Section of Solid State Chemistry, University of Leiden, PO Box 9502, 2300 RA Leiden, The Netherlands

(Received 3 May 1978; accepted 24 July 1978)

Abstract

PbZrS}_{3}\), Pnma, $a=9.0134$ (7), $b=$ 3.7660 (2), $c=13.9237$ (10) $\AA, Z=4$. Structure refinement based on neutron diffraction powder diagrams established the modified $\mathrm{NH}_{4} \mathrm{CdCl}_{3}$ structure of PbZrS_{3}. The compound is isostructural with PbSnS_{3}.

Introduction. We investigated the crystal structure of PbZrS_{3} as a part of a research programme on the structural relations of compounds $A B X_{3}$, where A represents an alkaline or alkaline-earth metal, B a transition metal and X a halogen or S .
Sterzel \& Horn (1970) reported the structures of PbZrS_{3} and PbHfS_{3}, but their samples were contami-
nated with PbS . Their resulting X-ray powder pattern could be indexed like PbSnS_{3} (Yamaoko \& Okai, 1970), Table 1.

Table 1. Crystal axes for $A B \mathrm{~S}_{3}$

	$a(\mathrm{~A})$	b (()	$c\left(\begin{array}{l}\text { (}\end{array}\right.$	Reference
PbZrS_{3}	9.031 (6)	3.770 (4)	13.919 (9) $\}$	Sterzel \& Horn (1970),
PbHfS_{3}	8.989 (2)	$3 \cdot 738$ (2)	13.924 (4) $\}$	omitting their PbS pattern
PbZrS 3	9.037 (5)	3.77 (2)	13.926 (5)	Yamaoko (1972)
PbZrS_{3}	9.0134 (7)	3.7660 (2)	13.923 (10)	This work
PbSnS_{3}	8.738	3.792	14.052	Jumas et al. (1972)
$\mathrm{Sn}_{2} \mathrm{~S}_{3}$	$8 \cdot 864$ (6)	3.747 (1)	14.020	Mootz \& Puhl (1972)

Yamaoko (1972) reported the structure of PbZrS_{3}, prepared under a pressure of 20 kbar at $800-900^{\circ} \mathrm{C}$; the X-ray powder diagram is similar to that of $\mathrm{Sn}_{2} \mathrm{~S}_{3}$ (Mootz \& Puhl, 1967).

We prepared PbZrS_{3} and PbHfS_{3} by firing stoichiometric amounts of the binary sulphides in evacuated sealed quartz tubes at $800^{\circ} \mathrm{C}$ for a week. The X-ray diffraction patterns of both compounds could be indexed leading to the space groups Pnma or $P n 2_{1} a$, in agreement with the data of Yamaoko (1972). Neutron diffraction powder data of PbZrS_{3} were collected on a neutron diffractometer at the HFR reactor in Petten. The neutron wavelength was $2.570 \AA$. Soller slits with a horizontal divergence at 30^{\prime} were placed before the monochromator and in front of the BF_{3} counter.

With neutron diffraction data in the range $5.4<$ $2 \theta<138^{\circ}$, a structure refinement based on the Rietveld (1969) profile method has been carried out in space group Pnma by minimizing the residual function $\chi^{2}=\sum_{i} w_{i}\left|y_{i}(\mathrm{obs})-(1 / c) y_{i}(\mathrm{calc})\right|^{2}$. The R factors are defined by:

$$
\begin{aligned}
R_{\text {nuclear }} & =100 \sum\left|I(\mathrm{obs})-\frac{1}{c} I(\mathrm{calc})\right| / \sum I(\mathrm{obs}), \\
R_{\text {profle }} & =100 \sum\left|y(\mathrm{obs})-\frac{1}{c} y(\mathrm{calc})\right| / \sum y(\mathrm{obs}), \\
R_{\text {weight }} & =100 \sqrt{ }\left[\sum w \mid y(\mathrm{obs})\right. \\
& \left.-\left.\frac{1}{c} y(\mathrm{calc})\right|^{2} / \sum w|y(\mathrm{obs})|^{2}\right] .
\end{aligned}
$$

Table 2. Structural parameters for PbZrS_{3} in spacegroup Pnma with overall isotropic temperature factor B

		x	y	z	
Pb	4(c)	0.5167 (3)	0.25	$0 \cdot 826$	
Zr	4(c)	$0 \cdot 1669$ (4)	0.25	0.0498	
S(1)	4(c)	0.2738 (9)	0.25	0.2142	
S(2)	4(c)	0.1637 (11)	0.25	0.4908	
S(3)	4(c)	0.0113 (14)	0.25	0.8932	
$R_{\text {nuclear }}$	$\begin{aligned} & 4.55 \\ & B\left(\AA^{2}\right) \end{aligned}$	$\begin{gathered} R_{\text {profile }} \\ 0.70(5) \end{gathered}$	7.95 Residue	$\begin{gathered} R_{\text {welght }} \\ 4.25 \end{gathered}$	$10 \cdot 08$

Table 3. Interatomic distances (\AA)
Distances marked with an asterisk occur in pairs.

$\mathrm{Pb}-\mathrm{S}(1)$	$2.728(6)^{*}$	$\mathrm{Zr}-\mathrm{S}(1)$	$2.481(9)$
	$3.579(8)^{*}$	$\mathrm{Zr}-\mathrm{S}(2)$	$2.558(7)^{*}$
$\mathrm{~Pb}-\mathrm{S}(2)$	$2.879(9)$	$\mathrm{Zr}-\mathrm{S}(3)$	$2.599(8)^{*}$
	$3.383(8)^{*}$		$2.590(10)$
$\mathrm{Pb}-\mathrm{S}(3)$	$3.055(9)$		

$I(\mathrm{obs}), I($ calc $)=$ observed and calculated integrated intensity of each reflection, y (obs), y (calc) $=$ observed and calculated profile data point, $w=$ statistical weight allotted to each data point, $c=$ scale factor.

The coherent scattering lengths ($\times 10^{-12} \mathrm{~cm}^{2}$) were 0.940 for $\mathrm{Pb}, 0.71$ for Zr and 0.28 for S (Bacon, 1972). The results are shown in Tables 2 and 3. The space group $P n 2_{1} a$ gave no significantly better results.

Discussion. In the $A B S_{3}$ compounds with large radius of A a number of structures are realized; the (distorted) perovskites, the $\mathrm{NH}_{4} \mathrm{CdCl}_{3}$ structure and the TlPbI_{3} (NdYbS_{3}) structure (Stoeger, 1977).

The structure of PbZrS_{3}, and most likely that of PbHfS_{3}, is strongly related to the $\mathrm{NH}_{4} \mathrm{CdCl}_{3}$ type (Strukturbericht, type E 24), containing columns of double edge-sharing octahedra linked by Pb ions in tricapped trigonal-prismatic coordination. However, two of the anions, $S(1)$ and $S(3)$, have poor charge compensation in this structure. This may result in smaller $\mathrm{Pb}-\mathrm{S}(1)$ and longer $\mathrm{Pb}-\mathrm{S}(3)$ distances, as is the case in KCdBr_{3} (Natarajan Iyer, Faggiani \& Brown, 1977). However, in PbZrS_{3} the Pb is moved to $S(2)$ and one pair of $S(1)$, resulting in an asymmetric position of Pb in the prismatic coordination and a hole for a lone pair. This feature is also found in PbSnS_{3} (Jumas, Ribes, Philippot \& Maurin, 1972) and $\mathrm{Sn}_{2} \mathrm{~S}_{3}$.

In contrast, the sulphides $A \mathrm{ZrS}_{3}$, with $A=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Eu}$ and Ba (Lelieveld \& IJdo, 1978) are all distorted perovskite-type structures.

The authors wish to thank Mr J. F. Strang of Energieonderzoek Centrum Nederland, Petten, for collecting the neutron diffraction data.

References

Bacon, G. E. (1972). Acta Cryst. A28, 357-358.
Jumas, J. C., Ribes, M., Philippot, E. \& Maurin, M. (1972). C. R. Acad. Sci. 275, 267-272.

Lelieveld, R. \& IJdo, D. J. W. (1978). To be published.
Mootz, D. \& Puhl, H. (1967). Acta Cryst. 23, 471-476.
Natarajan Iyer, M., Faggiani, R. \& Brown, I. D. (1977). Acta Cryst. B33, 127-128.

Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.
Sterzel, W. \& Horn, J. (1970). Z. Anorg. Allg. Chem. 376, 254-260.
Stoeger, W. (1977). Z. Naturforsch. Teil B, 32, 975-981.
Y амаоко, S. (1972). J. Am. Ceram. Soc. 55, 111.
Yamaoko, S. \& Okai, B. (1970). Mater. Res. Bull. 5, 889894.

